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Abstract, The troublesome multi-center molecular integrals of Slater type orbitals (STO)
in molecular physics calculations can be evaluated by using the Fourier transform and proper
coupling of the two center exchange integrals. A numerical integration procedure is then
readily rendered to the final expression in which the integrand consists of well known special
functions of arguments containing the geometrical arrangement of the nuclear centers and the
exponents of the atomic orbitals. A practical procedure has been devised for the calculation of
a general multi-center molecular integral coupling arbitrary Slater-type orbitals. Symmetry
relations and asymptotic conditions are discussed. Explicit expressions of three-center one-
electron nuclear attraction integrals and four-center two-electron Coulomb repulsion integrals
for STO of principal quantum number n=2 are listed. A few numerical results are given for the

purpose of comparison.



I. Introduction

Because the calculation of three and four-center integrals is one of the most complicated
problems involved in the quantum theory of molecules and solids' , it has been a stumbling block
to molecular ab initio calculation. The nature of the complications is due to the complicated
angular dependence associated with different centers and the presence of square roots of radial
dependence in describing relations between functions of different distances. In the past, two
general procedures have been employed. The method of Barnett and Coulson®  is based on a one-
center expansion in which the numerical work commonly is very tedious and prone to error. The
other method is based on the adoption of Gaussian orbitals either via expansion’ or
transformation® . Although the Gaussian type orbitals are computationally convenient, they are
nevertheless inadequate because of poor radial dependence, e.g., the nonfulfillment of the cusp
condition as well as the rapid falloff at long distances. Therefore, numerious Gaussian
orbitals must be introduced in order to produce an accurate result. In the past, a few
systematic investigations of molecular two center integrals over Slater-type orbitals (STO) led
to general and explicit, but formal, solutions,” - which commonly cannot be used efficiently
for numerical calculations. Recently, instead of tackling the STO, which supposedly give a more

8
accurate electronic distribution, Filter and Steinborn introduced the so called "B functions"



and "A functions™  which are closely related to the reduced Bessel functions and Laguerre
functions, respectively. Linear transformations exist between the STO and these two types of

functions. A general expression' ' has been given for the three-center nuclear attraction
integral and the multicenter repulsion integral over the "B functions". However, the ad'vantagc
of these functions is dubious both because the expression itself is still complicated, involving
multiple numerical integration, and because additional effort is reciuired_ to perform the
summation to obtain the STO integral values. We have already suggested' * that, by using the
Fourier transform technique and properly coupling a pair of two-center exchange integrals, the
multicenter molecular integrals can be handled in a straightforward manner. For example, a
four-center two-electron Coulomb integral can be cast into a simple triple numerical integration
with finite domain. As tﬁe complicaled geometrical arrangement is connected vectorially and
appéars in the argument 6f the functions in the integrand, a simple numcricai procedure can be
directly applied. | However, we recently noted that the polynomials appearing in the integrand

are related to the modified Bessel functions.' * Therefore, by means of their recurrence

relations, the final compact expressions are readily obtained.



1. Basic integrals and procedure

A set of exchange integrals which are commonly applied to the atomic collisions of heavy

particles has the following form

n,-2n,-2
In‘ 1oL (a,b,c,d) = rA rB (p, .rA)(p, 'rA)”(pl, .rA)
Aq, .rB)(q2 .rB)..(qlz .rB) exp(-¢ rA-d rB+1a.rA+1b.rB) dr - (D)

where, as before' ; p, ,p, ..p] and ¢, ,q, ..q12 are arbitrary constant vectors and, in
1

particular, can be set to unit normal vectors along the Cartesian axes; a and b are real
constant vectors. The constants ¢ and d are real and positive. Integersn, andn, 2 1 and

and L, > 0. The vectors r,, r_ are the radius vectors of the electron measured from nucleus A

! A’ B

T4

and B respectively. It has been shown  that Eq. (1) can be expressed as a simple one-

dimensional integral such as

1, +1,

b,c,d) = (-i V).(p, V V.
In‘ Lol (a,b,c,d) = (-1) (p, a) (pl‘ a)(q, Vb) (ql

2 .Vb)
n, -1 n, -1
(-9/dc) (-d/4d) I (a,b,c,d) ()
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exp(iB.R - 7LR)du

where I (@,bed)=2r [ 3

1 50 9t 0 0 . x

A =u(l-wla+bl +uc +(l-u)d ' (4)
= uad- l‘ = -

B =ua-(1-u)b, R rA rB (5)

Also, the following differential operations can be easily established

Vak = Vbl = u(l-u)(a+b)/A v ©6)

MAc=uc/h,  IN/Ad=(1-u) d/A | W

Va(ﬂ.R) =uR, Vb(B.R) =-(1-u)R 8)

d(B.R)/dc=0, JI(B.B)/ad=0 )

In adopting this expression, we suggested' * that the multi-center molecular imégrals of
STO can bé constructed ffom‘thcse lwb-center exchange integrals. Although in the final
expressions numerical integration still has to be performed, the troublesome multi-center nature
is connected in a vectorial relation which appears only in the argument of the integrand. Thus,
af.ler;thc géometry and the orbitals are given, the integrals can be evaluated in a straiglht-
forward manner. The method has been found to be expedient, and accurate results have been
()biained. In this communication, we note that the parametric differentiation in Eq. (2) is
commutative and associative, Thercfore, if the solid harmonic operators are introduced, in
relation to Eq.(1), we can further define another set of two-center exchange integrals such as

, | | .
J . (ah,cd) = J rA' Yl

A l ) A
n, Il ,m n, L ,m, . m,( rA) B _Yl, m, (rB)



n,-l, -1 n,-,-
r

A B

! cxp(-crA-drB+ia.rA+ib.rB) dr | (10)

In Eq.(10) n, .1, ,m, and n, ,}, ;m, are the quantum numbers of the orbitals. In connection

with Eq. (2), we obtain

L+,

J m, (ﬂ,h,c,d) =(_i) )’l (V )

m, (Va)yL m b

n, -1, -1 n, -, -1

(-d/dc) (-d/dd) H (a,b,c,d)

I, +1 n, -l, -1 n, -, -1

[ T
=(-1) y v,) Y1 m, (V,,) (=a/dc) (-d/dd)

1, m,

ip.R

2n cdj1 e’ R x, (AR)u(l-u)/A du ¢S
0

where k is the modified spherical Bessel function. Furthermore, the solid harmonic
n

t 6

gradient operator A (Va ) introduced can be interpreted as in the Condon-Shortley

I’T]|

convention , for example,y  =-(3/8 n)llz(alaaxﬂa/aay) etc. For practical purposes, the
o
differential operations have to be performed under the integral sign in Eq.(11) which is )
straightforward but laborious. However, with the aid of Eq.(4)-Eq.(9) and the recurrcnéc(
relations of Ko the procedure can be greatly simplified. The technique of solving the
multicenter molecular integral by coupling a pair of two-center exchange integrals has already

been suggested. To illustrate the idea and to demonstrate the simple operations, we write down

the three-center nuclear attraction integral, denoted as L, and the four-center two-electron



Coulomb repulsion integral, denoted as M, coupling some STO, the numerical solutions of which
are known to be difficutt..
© We write

* 1 :
© = J’ Wn, I, .m (ﬁA’rA) }Cwnz 1, ,m, (éB’rB) dr (12

Using the identity and referring to Fig. 1, we have
U =12n [e ARV dq
C .

Eq.(12) can be written as
-iq.R

L=C )C &y [e "TAC 2 q dq

1, +1, n, -I, -1 L -1 .
G 1Ga/9E ) (-3/38 ) N m V2% m %)
JBR
2n§A<“,BI AB RABK (m )/x u(l-w) du]__ =0 .
where § =ua -(1-u)b, A =u(l-u)la+bl +u§A+(1-u)§B . (14)

After performing the parametric differentiation, the angular parts of ¢ are integrated
analytically by utilizing the plane wave expansion expliq. (uRAB AC)] and the radial parts of q

and u are integrated numerically. The four-center two-electron Coulomb integral is defined as

follows:

1 *

M= w O A)\v“l“]z(éB g Vv Gl

|v|v n]v;y;
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Vol (éD D)dr dr, | (15)

In Eq.(15), for example, the indices n, ,I, ,;m, are the quantum numbers of the orbital; r, B
denotes the radius vector of electron number 1 referred to an atomic nucleus B as origin; §B s
the exponent parameter of STO etc.

We replace 1/r, , by its Fourier transform

ik, =12 [V dg=iin | JHRACHT ¢ A /g dg (16)

Notice that expressing r,, asR is quite arbitrary and offers no advantage

AcT A

over other choices as long as they form a vectorial relation.
2 2

M = Cn| (iA) C“2( &B) Cn, (iC) Cn‘ (&D)/(21t q)

11 l] ll

/\ v * A A
f A Yl Ay Y, mf' e Y m{ndhp Y, m{" D
n, -l -1 n,-L-1 n,-,-1 n-l,-1 . .
-iq.r, iq.r, . iq.R
Ty A r,B L e Lo e Ae Ce " AC
- &ph g 8ch o pF
e AT A ¢ e dr, dr, dq V)

By using Eq.(10), we write Eq.(17) as
= iq.R : 2
M=C (¢)C GpC EIC &) [hTAC K2n q ) dg

1, +1, +1, +], n, -1, -1 n-L -1

1 *
(-i) 1(-/28 ,) (-3/8 ) N om Vo)V m( %)
2nE :;Bf RaB RAB K (AR, YA u(l-u) ]a____q’b=0du



n, -1 —i n, -l -1

. :
[ (_a/aéc) (-a/agD) yl , rn’ (Vay) yl‘ ln‘( be)
(18)
' iB"R ’ v ’2 b 9, A\
2mE & f e’ TCDR,o K (MR, YA w'(1-w) 1a,=q’b,=0 du
where B and A are as defined before and
B’=va’-(1-u)b’, A* =u'(l-u)la’+b’l +u’§’c+(l-u’)§;) o (19)

Because the angles are generated via parametric differentiation with respect to the
constant vectors a, b, a’ and b’, it is necessary to invoke the conditions,a=-q,b=0,2a’ =
q. b’ = 0 at the end of the differential operations. Then, the integrand consists of a finite

17

sum of angular orbitals in variable q." By properly coupling the orbitals  and using the

plahé—wavé éxpansion explig.(R, -uR +u,RCD)]"Wé can integrate analytically the angular part of

AC AB

q. Then the radial parts of q , u and u’ integrations are calculated numerically in a

straightforward manner, such as by Gaussian quadrature or other numerical means.

[1l. Symmetry relations

By inspection, there are simple‘symmetry relations that can be readily employed,; in this way the

number of independent integral expressions derived is reduced to the minimum.




Three-center Nuclear Attraction Integrals

Referring to Fig. 1, suppose we have an expression (see Appendix A ) for the following
integral. For brevity, we write i=n, I, m, ,j=n, ,}, ;m, etc.

If the expression of the following integral is known

r

* 1
EIAATCN F e (20)

we consider the following integral
L ) ! d 21
Jj,i_j \Vj (éA!rA) ;'(,,WI(F’BJB) r ( )

where L, idcnotcs the integral for which the nuclear center C has undergone an

’

inversion operation, i.e., if r =Ir - R_|, thenr__,= Ir + R_|. Furthermore, through the

C C C C
inversion of the electronic coordinate which is equivalent to the operation taking r A to -rB,
rB to -rA, Eq.(21) becomes
’ * l d
Lj,i'f Vv, GaTR): - V(G dr
1 1, +, . 1 ;
"(" ) I ‘VJ (éA’rB) ;‘ ‘vi(éB'rA) r
C
L+,
=\ L ——
I A (22)

The interpretation of Eq.(22) is that the value of integral Lj , can be obtained by

’

taking the complex conjugate of the value derived by means of the expression of L. , in which

10



the exponents are properly interchanged with the inverted nuclear coordinate C. Finally, a

phase factor is multiplied to obtain the integral value.

Four-center Two-electron Coulomb Repulsion Intezrals

Referring to Fig. 2, suppose we have
: ! ' | dr, dr, ‘ 23
li,j;k,l_ f \Vl (gA:rl A) ‘V](g B’rl B) .;_I , Wk(écvrz C) \Vl(gD’rz D) r, dr, ( - )
and are interested in evaluating another integral of the following form

* ' A 1 ® _
Ik,l;i,j=fwk(§/\’r' JRAZCIRUEY, 7 Eor: \pj(ﬁD,rz ) dr. dr,

(24)
The integral value of ]k L1 is, in general, different from that of lij'k I Because
the subscripts 1 and 2 are dummy indices, Eq.(24) can be easily rewritten as
* ' * ' :
Lerig™ ] a2 Vgt gl Vi Geh @ Ve h p) dn dr.
=1 . A C,Beo D,. - s —— (25
li,];k,l{ C.B E’A 1i(j éB éD} | (25)

In Eq.(25), exchange of the nuclear center is implied, €.g., A to C, Cto A etc.,

including the exchange of exponents in the expression of I. .

Ljk,l’ Essentially, the nuclear

center is reordered.

11



Next, consider the following integral

* *
L j TN Vikpr gl; Y Eoh v & ) dr, dr,

@6

Comparing to Eq.(23), we immediately find that

*

= A - B’ « D, - 27
Ij,i;l,k Ii ,j;k,l( C gA 5 ) 27

B° 5S¢ %p

IV. Asymptotic Behavior and Nuclear Center Collapse

With this formulation, more information of the asymptotic behavior of the integral is
easier to obtain, at least in a qualitative sense. For example, it is obvious that the

integrand decreases exponentially as R, _ and R _ __ increase linearly through K. However, if R

AB CD AB

and R cp € kept finite, the integrand decreases in a dampened oscillatory fashion with respect

toR AC through jn. In another words, the integral value varies to a smaller extent with respect:

to a change of R | than of R AB and R____, as we would expect. The formula is equally valid if the

AC CD

nuclear centers are collapsed into three, two or one center by simply taking the nuclear

distance to zero,e.g., R, _=0,orR__ =0, (three center), or R

AB CD =0 (two center), or

AB™RCD

R =0 (one center), respectively. We notice that Kn(x) goes to infinity at the origin,

=R ___ =R
AB CD AC
but of course, this does not necessarily mean that the integral is not finite. However, forn 2

2, there is a much stronger singular point at the origin; the straightforward procedure by

12



directly taking e.g., R, _ -» 0 would certainly lead to some numerical problems. Fortunately, by

AB

: . . ' m . .
close inspection, we find that, at all times, the term Rk _(AR), m > n+1 appears in the integrand.
n

Using the serics representation  of K
X (n+)! -1 __(n+2)! -2
Kn(x)—e /x 11+ I T(n) (2x) +2! F(n-l)(zx) +...]
n
=e /X I (n+ ; 20 (28)
r(1/ 2+n+k)

where the Hankel’s symbol (n, k) = iE H ij -21;1-1—(5 :

we therefore, obtain

lim Rm K“(XR) =0 ,m>n+l (29)
R-0 '
= | (30)
2" |

" i.e., for the collapsed center case, Eqs.(29) and (30) can be used in the integrand to avoid any

numerical difficulties.

V. Numerical Example

In order to test this method, a simple Gaussian quadrature integration scheme has been applied
to the derived formulas for the two electron multicenter integrals for the methane molecule.
The results are listed in Table I along with the well known published results of Shavitt and

Karplus' , and the results computed using the Barnett-Coulson® method. We used the identical

13



parameters and the same notation as reported by Shavitt and Karplus, which are summarized in

Table 1.

Integral

(h, k, ;h, h, )
(h, h, :h, hy)
(h, h, ;h, hy)
{ch,:h, h,)
(x h, :h, h,)

(zh, ;hy b))

Table 1. Some multi-center-two electron integrals for methane

0.0

0.0

1.8856180

-0.94280904

-0.94280904

This mcthod

12x12x16

0.03068148

0.03569343

0.09569741

0.01298606

-0.00752578

-0.04765937

0.0

0.0

0.0

1.63299316

-1.63299316

Results, according to number of quadrature points

20x20x24

0.03068213

0.03569397

0.09570521

0.01274316

-0.00752560

-0.04766222

0.0

-2.0

0.6666667

0.6666667

0.6666667

Shaviut-Karplus

12x12x16

0.03068196

0.03569398

0.09570384

0.01286213

-0.00752573

-0.04766145
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Orbital

1s(C)

2p(C)

ls(Hi)

20x20x24

0.03068187
0.03569368
0.09570556
0.01271293
-0.00752559

-0.04766277

Symbol Exp.
c 5.700
X,y.Z 1.625

h, 1.000

Barnett-Coulson

0.03068247

0.01274093
-0.00752559

-0.04766263




(ch, ch)
(chy xh)
(ch, ;zh)

(xh

.o
>
—
-

'

~—

(xh, :zh,)
(yh, iy h; )
zh ;xh,)
(zh, ;zh,)
(ccihy h,)
(xc:h, h,)
(zcsh hy)
(xx;h, h,)
S(x 7 shy hy)
(yyih h,)
(zzsh h,)
(xx;izh,)
(xz:xh,)

(zzizh )

0.01191481
0.02017340
0.00602142
0.03557018
0.00149034
0.02231921
10.07790808
0.00855243
0.16644702
0.00236735
-0.00167397
0.14192876
-0.00143553
0.13676011
0.14091369
-0.22143208
-0.01062253

-0.25503541

0.01121649
0.01981324
0.00588692
0.03556931
0.00148956
0.02231975
1007791435
0.00854907
0.16654179
0.00237118
0.00167668
0.14192778
-0.00143592
0.13675834
0.14091243
10.22142793
-0.01062202

-0.25502346

0.01191464

0.02018282

0.00602480

0.03556692

0.00148892

0.02231903

-0.07791088

0.00854768
0.16864892
0.00236900
-0.00167514
0.14192799
-0.00143598
0.13675888
0.14091270
-0.22142658
-0.01062207

-0.25502024
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0.01121651
0.01980944
().()0588562
0.03556880
0.00148937
0.02231976
-0.0779139%4
0.00854864
0.16656439
0.00237002
-0.00167586
0.14192784
-0.00143598
0.13675864

0.14091244

0.01980903

0.00588522

0.03556858

0.00148940

0.02231959

-0.07791452

0.00854849

0.00237004

-0.00167581

0.141927
-0.00143579
0.136758

0.140912



V1. Conclusion

Using the integral transform technique, we have derived explicit expressions for one-
electron three-center nuclear attraction molecular integrals coupling the n=2 atomic Slater
orbitals which are listed in Appendix A. Using Eq. (20) and similar expressions given in
Appendix A, we can write the expressions for two-electron four-center Coulomb repulsion
integrals, which are considered among the most difficult molecular integrals to evaluate. It
is neither necessary nor feasible to list all the expressions; however, we give in Appcﬁdix B,a
representative set. These expressions contain well behaved and well known special functions to
which numerical procedures can be easily applied. Although the development is parallel to what
was reported earlier, * the recognition of the modified Bessel functions in the integrand and the
gradient operators introduced allow us to write directly the integral expression coupling any
arbitrary orbitals in a much more compact form. As pointed out earlier, the merit of this
approach lies in the fact that the complicated geometrical nature of a multi-center integral is
properly handled by means of the vectorial relations and is manifested in the integrand through
the argument of special functions in a natural way. Therefore, it may have better numgrical
behavior than most aforementioned methods. For a small set of molecular integrals, we have
encountered no numerical difficultics as clearly borne out by our numerical example. However, a

more thorough investigation will be conducted in the future. By means of a simple symmetry

16



argument, the number of independent integral expressions can be greatly reduced. We also have
shown the asymptotic behavior of the integral with respect to the internuclear distance and
expect no numerical difficulties if provisions are properly taken to treat the collapsed center
case. With perseverance, other integral expressions involving either higher orbitals or other
operators can be equally well deduced. Despite the fact that this method cannot be easily
generalized, i.e., explicit expressions have to be developed for each particular integral, this
method, nevertheless, offers indeed a simple and compact solution to this notoriously difficult
molecular problem. With further réf inement and efficient numerical procedures, we believe this
approach will make a contribution to the field of mol_ec.ular calculation. We also point out that
this formulation is quite suitable for a small computer, as was demonstrated in our numerical

example. A typical run of a set of integrals on a IBM PC AT is of the order of a few minutes.

17
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Appendix A

Three-center nuclear attraction integrals
We list only the integrands with the argument of the functions omitted wherever possible.
The full expression should be interpreted in the following sense, for example:
1
L, =<2p, A; IsB >
C
=2/Vr £,&.C, (€ )C (5) [ ] 1 ao & AR, IR pu (1-0) g
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We further substitute q = tan(v) to use v as an integration variable with the limit from

0 to /2. In the above equation, we have
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-Appendix B
Four-center two-electron repulsion integrals
We list only the integrands and suppress the argument of the functions wherever possible. The
full expression should bé interpreted in the following sense, for example:
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We further substitute ¢ = tan(v) to use v as an integration variable with the limits from 0 to
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Fig. 1. The coordinate system for one-electron three-center integrals
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Fig. > inate sys
g. 2. The coordinate system for two-electron four-center integrals
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